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T (I),g
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For v ∈ L1([0,1],V ), we set ϕv the flow of v:{
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ϕv (0) = Id

−→ Large deformation: ϕv
t=1.

−→ Action on images: ϕ · I = I ◦ ϕ−1.
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Diffeomorphometry and geodesic positioning

systems for human anatomy, Miller et al,

Technology 2014.

v ∈ L2([0, 1],V ) 7→ D
(

T (ϕv
t1 ·I0), g

)
+

∫ 1

0
c(vt)dt

c(v) = |v |2V

[ J. Hinkle, M. Szegedi, B. Wang, B. Salter, S. Joshi. 4D CT image
reconstruction with diffeomorphic motion model.]
[ C. Chen, O. Öktem. Indirect Image Registration with large
diffeomorphic deformations.]

[Sylvain Arguillere. Géométrie sous-riemannienne en dimension
infinie et applications à l’analyse mathématique des formes. PhD
thesis, Paris 6, 2014.]
[Alain Trouvé. Diffeomorphisms groups and pattern matching in
image analysis. International Journal of Computer Vision,
28(3):213–221, 1998.]
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Incorporating a structure in large deformations:
I Sparse LDDMM (Deformetrica) [S. Durrleman, M. Prastawa, G. Gerig, and S. Joshi.

Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In Information
Processing in Medical Imaging , pages 123-134. Springer, 2011]

I Higher order momentum [S. Sommer M. Nielsen, F. Lauze, and X. Pennec. Higher-order
momentum distributions and locally affine lddmm registration. SIAM Journal on Imaging Sciences, 2013]

I GRID [U. Grenander , A. Srivastava , S. Saini. A pattern-theoric characerization of biological growth.
IEEE, 2007]

I Poly-affine [V. Arsigny, X. Pennec, N. Ayache, 2005. Polyrigid and Polyaffine Transformations: A
Novel Geometrical Tool to Deal with Non-rigid Deformations – Application to the Registration of Histological
Slices. Medical Image Analysis 9, 507–523]

I Diffeons [L. Younes. Constrained diffeomorphic shape evolution. Foundations of Computational
Mathematics, 2012.]
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Infinitesimal action

Field generator

Cost
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Definition (Finite energy controlled paths on O)
We denote Ω the set of mesurable curves t 7→ (qt ,ht ) ∈ O × H
such that :
I q̇t = ξqt (vt ) where vt = ζqt (ht ) ∈ ζqt (H)

I Energy E(q,h)
.

=
∫ 1

0 cqt (ht )dt <∞

−→ ϕ
ζq(h)
t=1 is a modular large deformation.

−→ ϕ
ζq(h)
t=1 · q0 = q1.

−→ ϕζq(h) is defined by (qt=0,h) ∈ O × L2([0,1],H).



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Modular large deformations

From a deformation module to a deformation model



Incorporating intuitive prior in image reconstruction

Sub-Riemannian structure on O

M = (O,H, ζ, ξ, c)

Field generator

Infinitesimal action

cost

Controls

Geometrical
descriptors



Incorporating intuitive prior in image reconstruction

Sub-Riemannian structure on O

SUB-RIEMMANNIAN STRUCTURE ON O



Incorporating intuitive prior in image reconstruction

Sub-Riemannian structure on O

Proposition
Wet set ρ : (q,h) ∈ O × H 7→ (q, ξq ◦ ζq(h)) ∈ TO. Then
(O × H, c, ρ) defines a sub-Riemannian structure on O and

Dist(a,b)2 = inf{
∫ 1

0 cq(h) | h ∈ L2([0,1],H), q̇ = ρq(h),
qt=0 = a,qt=1 = b}

Theorem
If Dist(a,b) <∞ the energy E, there exists (q,h) ∈ Ω such that

qt=0 = a, qt=1 = b and Dist(a,b) =
√∫ 1

0 cq(h).

[B. G., S. Durrleman, A. Trouvé. A sub-Riemannian modular framework for diffeomorphism based analysis of shape ensembles, SIAM Journal of Imaging Sciences,

10.1137/16M1076733 (2018).]

[S. Arguillère. Géométrie sous-riemannienne en dimension infinie et applications à l’analyse mathématique des formes, PhD thesis, Paris 6, 2014]

[A. Agrachev, D. Barilari, U. Boscain. Introduction to Riemannian and Sub-Riemannian geometry, 2014.]



Incorporating intuitive prior in image reconstruction

Sub-Riemannian structure on O

Relaxed problem

Proposition
Let M = (O,H, ζ, ξ, c) be a deformation modules satisfying the
UEC and µ : O 7→ R+ C1. Let a ∈ O and

Ja : h ∈ L2([0,1],H) 7→
∫ 1

0
cqt (ht )dt + µ(qt=1,b)

with qt=0 = a and (q,h) horizontal.
Minimizers of Ja can be parametrized by an element η ∈ T ∗

aO.
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Image reconstruction

Goal:
I Using I0 as a prior to reconstruct from data g

I Define a deformation module M = (O,H, ζ, ξ, c)

Strategy: using geodesics parametrized by (a, η) ∈ T ∗
aO to

transform I0.

JI0,g(a, η) = C(a, η) +
1
λ

D
(

T (ϕ
ζq(h)
t=1 · I0),g

)
with (q,h) the geodesic parametrized by (a, η).
−→ A well-defined regularization method (existence, stability
and convergence).
[B.G., Incorporation of a deformation prior in image reconstruction (2018)]
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[J. Adler et al. ODL - a Python framework for rapid prototyping in inverse problems. In preparation, KTH, Royal Institute of Technology. Code and documentation available

online: https://github.com/odlgroup/odl.
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