GdR ISIS - Géometrie et représentation de la couleur

Interpolation of the MacAdam ellipses

Emmanuel Chevallier, Ivar Farup

21 november 2018

MacAdam ellipses

Sets of indistinguishable colors at $48cd/m^2$:

Riemannian geometry

► The scalar product depends on the point :

$$(\mathbb{R}^2, \langle ., . \rangle)$$
 becomes $(\mathbb{R}^2, \langle ., . \rangle_x)$,

and the length of a curve becomes

$$L(\gamma) = \int \sqrt{\langle \gamma'(t), \gamma'(t) \rangle_{\gamma(t)}} dt$$

 $\langle ., . \rangle_x$: local Sym₊ matrix M_x , local ellipse \mathcal{E}_x

► Distance perceived by the eye :

Riemannian hypothesis $\Rightarrow \langle ., . \rangle_{c_i} = MacAdam$ ellipse \mathcal{E}_i centered at c_i

Parametrization change :

$$\varphi : \mathbb{R}^2 \to \mathbb{R}^2$$
$$M_x = d\varphi^T M_x^{\varphi} d\varphi$$

Interpolation of the ellipses

Goal : Determining the Riemannian geometry of colors Challenge : How do we interpolate the MacAdam ellipses?

► Applications :

- image processing algorithms
- Schrodinger conjecture : geodesic passing through grey have a constant hue

FIGURE - (a) is a constant luminance image (b) shows the greatest variations according to different geometries of colors

Multiple ways of performing the interpolation, which is the best?

Different interpolation framework

▶ Parametrization of the CM :

xy,ab and uv

▶ Representation of the scalar product :

• matrix of the bilinear form
$$M = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

- *M*⁻¹
- log(M) (approximation of the affine-invariant metric on Sym₊)
- ellipse parameters (a, b, θ)

$$f^{(1)}: xy \to \mathbb{R}_+ \times \mathbb{R}_+ \times [0, 2\pi[$$
$$f^{(2)}: ab \to \mathbb{R}_+ \times \mathbb{R}_+ \times [0, 2\pi[$$

Which is the best framework (1) or (2)?

Evaluation of an interpolation

For an interpolation $f^{(1)}: xy \to \mathbb{R}_+ \times \mathbb{R}_+ \times [0, 2\pi[$ its quality could be measured by its regularity :

$$Q_1 = \int_{xy} \|df_{x,y}^{(1)}\| dx dy$$

Same interpolation in $ab, f^{(2)}: ab \to \mathbb{R}_+ \times \mathbb{R}_+ \times [0, 2\pi[$ the measure the quality would become :

$$Q_2 = \int_{ab} \|df_{a,b}^{(2)}\| dadb$$

Problem : Q_1 and Q_2 are not comparable

Challenge : defining a criterion which is independent of a parametrization

Intrinsic evaluation

Challenge : define a criterion which is independent of a parametrization

Solutions

- the average Riemannian curvature of the inteprolation
- a cross validation approach

$$Q=\sum_{i=1}^{25}d_{\mathcal{E}_i}(\hat{\mathcal{E}_i}^{(24)})$$

where

$$d_{\mathcal{E}_{ref}}(\mathcal{E}) = \|\mathcal{M}_{ref}^{-1/2}\mathcal{M}\mathcal{M}_{ref}^{-1/2} - I\|$$

FIGURE - Blue : true ellipse, Red : interpolated ellipse

Evaluation results

L	linear	
K	kernel	

TABLE – Interpolation typ			
	M	m	

Ρ

matrix

ellipse parameters inverse TABLE - Evaluation of the different interpolation rules

	xyY	Lab	Luv
LM	1.814	1.024	0.971
LMI	0.624	0.738	0.644
KM	1.514	1.121	0.809
KMI	0.776	0.795	0.602

► Interpolations on M^{-1} are always better than on M

► Interpolations on (a, b, θ) are always better than on $(\frac{1}{a}, \frac{1}{b}, \theta)$

► *uv* gives the best results most of the time

	xyY	Lab	Luv
LP	0.62	0.799	0.79
LPI	0.956	0.931	0.87
KP	1.004	0.911	0.721
KPI	1.242	1.006	0.799

l l

Error maps

(xy)

(ab)

(uv)

FIGURE - first row : LMI, seconde row : LM

Interpolations

FIGURE - Plots of ellipses in uv coordinates, (a): 2 best interpolations, (b): best and worst interpolations

Geodesics

Emmanuel Chevallier

Conclusion

Conclusions :

- inverse matrix of the bilinear form
- results on geodesics need further works (Schrodinger conjecture)

Perspectives :

- couple the leave one criterion out with curvature
- rephrase the problem as an optimization on the manifold of the Riemannian metrics embedded with an appropriate metric