GdR ISIS - Géometrie et représentation de la couleur

Interpolation of the MacAdam ellipses

Emmanuel Chevallier, Ivar Farup

21 november 2018

INSTITUT FRESNEL

MacAdam ellipses

Sets of indistinguishable colors at $48 \mathrm{~cd} / \mathrm{m}^{2}$:

Riemannian geometry

- The scalar product depends on the point :

$$
\left(\mathbb{R}^{2},\langle., .\rangle\right) \text { becomes }\left(\mathbb{R}^{2},\langle., .\rangle_{x}\right),
$$

and the length of a curve becomes

$$
L(\gamma)=\int \sqrt{\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle_{\gamma(t)}} d t
$$

$\langle., \text {. }\rangle_{x}$: local Sym $_{+}$matrix \mathcal{M}_{x}, local ellipse \mathcal{E}_{X}

- Distance perceived by the eye :

Riemannian hypothesis $\Rightarrow\langle., .\rangle_{c_{i}}=$ MacAdam ellipse \mathcal{E}_{i} centered at c_{i}

Parametrization change :

$$
\begin{gathered}
\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
\mathcal{M}_{x}=d \varphi^{T} \mathcal{M}_{x}^{\varphi} d \varphi
\end{gathered}
$$

Interpolation of the ellipses

Goal : Determining the Riemannian geometry of colors

Challenge : How do we interpolate the MacAdam ellipses?

- Applications:
- image processing algorithms
- Schrodinger conjecture : geodesic passing through grey have a constant hue

Figure - (a) is a constant luminance image (b) shows the greatest variations according to different geometries of colors

- Multiple ways of performing the interpolation, which is the best?

Different interpolation framework

- Parametrization of the $C \mathcal{M}$:
$x y, a b$ and $u v$
- Representation of the scalar product:
- matrix of the bilinear form $\mathcal{M}=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$
- M^{-1}
- $\log (\mathcal{M}) \quad$ (approximation of the affine-invariant metric on Sym_{+})
- ellipse parameters (a, b, θ)

$$
\begin{aligned}
& f^{(1)}: x y \rightarrow \mathbb{R}_{+} \times \mathbb{R}_{+} \times[0,2 \pi[\\
& f^{(2)}: a b \rightarrow \mathbb{R}_{+} \times \mathbb{R}_{+} \times[0,2 \pi[
\end{aligned}
$$

Which is the best framework (1) or (2)?

Evaluation of an interpolation

For an interpolation $f^{(1)}: x y \rightarrow \mathbb{R}_{+} \times \mathbb{R}_{+} \times[0,2 \pi[$ its quality could be measured by its regularity :

$$
Q_{1}=\int_{x y}\left\|d f_{x, y}^{(1)}\right\| d x d y
$$

Same interpolation in $a b, f^{(2)}: a b \rightarrow \mathbb{R}_{+} \times \mathbb{R}_{+} \times[0,2 \pi[$ the measure the quality would become :

$$
Q_{2}=\int_{a b}\left\|d f_{a, b}^{(2)}\right\| d a d b
$$

Problem : Q_{1} and Q_{2} are not comparable

Challenge : defining a criterion which is independent of a parametrization

Intrinsic evaluation

Challenge : define a criterion which is independent of a parametrization

Solutions

- the average Riemannian curvature of the inteprolation
- a cross validation approach

$$
Q=\sum_{i=1}^{25} d_{\mathcal{E}_{i}}\left(\hat{\mathcal{E}}_{i}^{(24)}\right)
$$

where

$$
d_{\mathcal{E}_{r e f}}(\mathcal{E})=\left\|\mathcal{M}_{r e f}^{-1 / 2} M M_{r e f}^{-1 / 2}-I\right\|
$$

Figure - Blue : true ellipse, Red : interpolated ellipse

Evaluation results

Table - Interpolation type

M	matrix
P	ellipse parameters
I	inverse

Table - Evaluation of the different interpolation rules

	$x y Y$	Lab	Luv
LM	1.814	1.024	0.971
LMI	0.624	0.738	0.644
KM	1.514	1.121	0.809
KMI	0.776	0.795	0.602

- Interpolations on M^{-1} are always better than on M
- Interpolations on (a, b, θ) are always better than on $\left(\frac{1}{a}, \frac{1}{b}, \theta\right)$

	$x y Y$	Lab	Luv
LP	0.62	0.799	0.79
LPI	0.956	0.931	0.87
$K P$	1.004	0.911	0.721
$K P I$	1.242	1.006	0.799

- uv gives the best results most of the time

Error maps

Figure - first row : LMI, seconde row : LM

Interpolations

Figure - Plots of ellipses in $u v$ coordinates, (a) : 2 best interpolations, (b) : best and worst interpolations

Geodesics

Conclusion

Conclusions:

- inverse matrix of the bilinear form
- results on geodesics need further works (Schrodinger conjecture)

Perspectives:

- couple the leave one criterion out with curvature
- rephrase the problem as an optimization on the manifold of the Riemannian metrics embedded with an appropriate metric

