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Color in history

Earliest philosophical thoughts about nature of color
Plato (-428 ÷ -348): impossibility of understanding the mechanisms
underlying colors now and forever;

Aristoteles (-384 ÷ -322): necessity of a medium (light) between objects
and eyes, colors as a mixture of black and white.

17th century scientists and philosophers
Descartes (1596 ÷ 1650): colors due to the different rotatory speed of
aether particles (fastest ∼ Red, slowest ∼ Blue);

Hooke (1635 ÷ 1703): colors originated by the deflection of the light
wave front from refractions and reflections of surfaces.
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Color in history

Newton (1642 ÷ 1726)
1671: Decomposition and recomposition of white light by a transparent
prism: primitive (no further decomposable) spectral lights;

1704: Opticks, geometrization of color (colors as musical notes).
Newton’s circle: White: center; Saturation: distance from the center;
Hue angle (red and violet fuse into purple); Perimeter: spectral colors.
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Color in history

From optics to physiological optics: the trichromatic theory
Euler (1707 ÷ 1783): colors ←→ variations of frequency of light waves;

Young (1773 ÷ 1829): hypothesis of nerve fibres in the retina with 3
portions sensitive to a principal color. Almost correct: 3 types of cones
(photoreceptors) responsible to color vision, Schultze (1825 ÷ 1874);

Helmholtz (1821 ÷ 1894): rescued Young’s intuition from oblivion with
experiments that confirmed the trichromaticity theory of color vision;

Maxwell (1831 ÷ 1879): light as electromagnetic wave (1861), color pho-
tography with RGB filters:
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Color in history

The modern era of color: Linear algebra and Differential Geometry
Grassmann (1809 ÷ 1877): abstraction of vector calculus, (1853): the set
of perceived colors is a convex cone in a 3-dimensional affine space;

Riemann (1826 ÷ 1866): in his PhD thesis defense (1854), he quoted the
"manifold of perceived colors" as an example of 3-D differential manifold;

Open problem: what kind of Riemannian metric describes color differences?
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Color in history

Psychophysics and color metrics
Weber (1795 ÷ 1878) experiments and Fechner (1801 ÷ 1887) formaliza-
tion: subjective brightness varies as the logarithm of incident light intensity ;

Helmholtz (1891): proposition of a Riemannian metric coherent with
Weber-Fechner’s law;

Stiles (1946): generalization of Helmholtz’s metric;

...longer list: the chemist Dalton, the poet Goethe, the physiologist Hering
and the philosophers Locke, Schopenhauer and Wittgenstein.
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Color in history

Schrödinger’s axiomatization
Schrödinger (1887 ÷ 1961): coherent set of axioms elegantly summarizing
previous discoveries (1920);

Second part of 20th century: prevailed a simpler empirical description of
perceived color spaces, CIE (Commission Internationale de l’Éclairage);

A noticeable exception: (1974)

H.L. Resnikoff’s: "Differential geometry and color perception"
Journal of Mathematical Biology 1, 97-131.
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The setting

Incident

light

Internal
Transducer

Human
Visual
System

Perceived
Colors

Simple color stimulus

Uniform background

A color stimulus in (the simplest) context;

The internal (neurophysiological) structure of the HVS is not considered,
only its "macroscopical" behavior is;

The HVS is that of an ideal average observer responding to arbitrarily
small and large light intensities.
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Metameric classes

Physical lights
Λ = [λmin, λmax]: spectrum of visible wavelenghts;

x ∈ L2(Λ): physical light;

Perceived lights
x ∼ y : metameric equivalence;

[x ]: metameric class of x , i.e. physical lights that, integrated w.r.t cones’
spectral responses, produce the same tristimulus as x .
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The spaces of perceived colors

The space P

The quotient space P = L2(Λ)/ ∼ is the space of perceived colorsa;

V =span(P), with linear structure:

α[x ] + β[y ] = [αx + βy ].

Negative coefficients and equality in V must be interpreted in the framework
of color matching.

a. . .in the very restrictive conditions specified above.

12/34



A brief historical introduction Resnikoff’s model Conclusions and perspectives about Resnikoff’s model

Schrödinger’s axioms and the basic properties of P

Axiom 1 (Newton, 1704)

x ∈ P, α ∈ R+ =⇒ αx ∈ P, i.e. P is a cone in V

Axiom 2 (Schrödinger, 1920)
∀x ∈ P, @y ∈ P: x + y = 0, i.e. no superposition of perceived light is dark
(true for natural light, not for the coherent one)

Axiom 3 (Grassmann, 1853, Helmholtz, 1866)
∀x , y ∈ P, ∀α ∈ [0, 1], αx + (1− α)y ∈ P, i.e. P is convex

Axiom 4 (Grassmann, 1853)

∀{xk , k = 1, . . . , 4} ⊂ P, ∃αk ∈ R \ {0}:
4∑

k=1
αkxk = 0, i.e. dim(V ) ≤ 3:

3: trichromate, 2: dichromate, 1: monochromate, 0: blind observers.
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The fifth axiom: Homogeneity of P

1D Motivation
X : topological space, G : transformation group, G×X → X , (g , x) 7→ g(x),
X is a homogeneous space of G if, ∀x , y ∈ X , ∃g ∈ G s.t. g(x) = y ;

Weber-Fechner’s law: brightness b(x) proportional to log x , so relative
brightness b(x1)− b(x2) of x1, x2 proportional to

log(x1)− log(x2) = log(x1x2
) = log(λx1

λx2
), ∀λ ∈ R+.

Relative brightness: invariant under the modification of light intensity

x1 7→ λx1, x2 7→ λx2, λ > 0.

This allows us to reproduce the sensation of a natural scene on a canvas,
TV, movie screen, etc.
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The fifth axiom: Homogeneity of P

1D Motivation
Set of light intensities: R+, both topological space and group.

R+ is a R+-homogeneous space:

∀x , y ∈ R+, y = y
x x ≡ λx , λ ∈ R+.

Relative brightness is a R+-invariant function defined on R+.

Weber-Fechner’s law defines the unique R+-invariant metric on R+ (up
to re-parameterizations).

Goal: generalize this argument to the entire color space. Color metrics
singled out by invariance properties of human vision.
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The fifth axiom: Homogeneity of P

The group of background transformations
Any x ∈ P can turn into y ∈ P not too different from x by a change of
background, and this process is reversible;
The group of changes of background illumination:

GL+(P) = {g ∈ GL(V ) : det(g) > 0, and g(x) ∈ P ∀x ∈ P}.

orientation-preserving invertible endomorphisms of V which preserve P.
P is a locally homogeneous space of GL+(P):

∀x ∈ P ∃U(x) ⊂ P : ∀y ∈ U(x) ∃g ∈ G : y = g(x).

Since P is a convex cone, local is equivalent to global homogeneity.

Axiom 5
P is a (globally) homogeneous space of GL+(P)
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Consequences on the structure of P

If X is G-homogeneous space w.r.t the action η : G ×X → X , and K is the
isotropy subgroup1 in x , then the map β : G/K → X , β(gK) = η(g , x) is
a diffeomorphism for every fixed x ∈ X .

In our case, we can write the diffeomorphic identification:

P ' GL+(P)/K .

∀α ∈ R+, α→ αx , preserves P, so g ∈ GL+(P) as αg ′, g ′ ∈ SL(P).2

So GL+(P) = R+×SL(P), and thus

P ' R+ × SL(P)/K .

1K = {g ∈ G : g(x) = x}, if X is a G-homogeneous space, then all isotropy group are
conjugated.

2SL(P) is the subgroup of GL+(P) given by the matrices of this group with unitary
determinant.
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Consequences on the structure of P

Axiom 4 (dim(V ) ≤ 3) =⇒ for trichromatic observers SL(P) � SL(3,R);

3 = dim(P) = dim(R+×SL(P)/K) = dim(R+)
=1

+ dim(SL(P))
≤dim(SL(3,R))=8

−dim(K);

So: 2 + dim(K) = dim(SL(P)) ≤ 8 , which allows us determining the pos-
sible forms of SL(P) and K (up to isomorphisms).
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Consequences on the structure of P

Basic idea used by Resnikoff (details in the paper. . .)

∃ S, semi-simple Lie group, and Tni , nilpotent Lie groups, i = 1, . . . , k,
ni ∈ N, such that

SL(P) ' S × (Tn1 × · · · × Tnk ) ,

where the elements of Tni are upper triangular matrices of the form

Tni =


1 αµν

. . .
0 1

 : αµν ∈ R+, 1 ≤ µ < ν ≤ ni

 ,

whose dimension is dim(Tni ) = ni (ni−1)
2 , thus

dim(SL(P)) = dim(S) + dim(Tn1 × · · · × Tnk )

and

dim(S) +
k∑

i=1

ni (ni − 1)
2 = 2 + dim(K) ≤ 8. (1)
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Consequences on the structure of P : only two possible forms

Tni have no compact subgroups, so K is a subgroup of S and verifies the
constraint (1).

The only two semi-simple groups S coherent with this are:{
S = ∅, with dimension 0
S = SL(2,R), with dimension 3

If S = ∅, then K = ∅ and Tni are isomorphic to T2 =
{(

1 p
0 1

)
, p ∈ R+

}
,

T2 ' R+ hence P = GL+(P)/K ' R+ × SL(P)/K ' R+ × R+ × R+;

If S = SL(2,R), then K ' SO(2) =
{(

cosϑ sinϑ
− sinϑ cosϑ

)
, 0 ≤ ϑ ≤ 2π

}
,

hence P = GL+(P)/K ' R+ × SL(P)/K ' R+ × SL(2,R)/SO(2).
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Consequences on the structure of P : only two possible forms

Summarizing, Axioms 1-5 imply that P can only have two forms:

1 P ' R+ × R+ × R+ Helmholtz-Stiles space

Perceived colors represented by a triple of positive real numbers (RGB, XYZ,
LMS, etc.);

2 P ' R+ × SL(2,R)/SO(2) a new perceptual color space:

R+: achromatic channel (average level of intensity);

SL(2,R)/SO(2): Poicaré-Lobachevsky 2D space of constant negative curvature,
yet to be fully understood in terms of colorimetric attributes.
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Perceptual invariance and color metrics

It is natural to search for a Riemannian metric on P coherent with Axioms
1-5: they determine the structure of P as a homogeneous space;

d(x , y): perceived difference between lights x , y with a background b;

d(g(x), g(y)): perceived difference between lights g(x), g(y) after a
change of background from b to b′.

Axiom 6: The perceptual metric
The Riemannian metric on P which measures perceptual differences between
colors is GL+(P)-invariant:

d(g(x), g(y)) = d(x , y) ∀g ∈ GL+(P), ∀x , y ∈ P.
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Perceptual metrics on P

P ' R+ × R+ × R+:

ds2 = α1

(dx1
x1

)2
+ α2

(dx2
x2

)2
+ α3

(dx3
x3

)2

αk > 0, Helmholtz-Stiles’s metric.

P ' R+ × SL(2,R)/SO(2):

ds2 = Tr(x−1dx x−1dx)

P 3 x =
(

x1 x3
x3 x2

)
2×2 positive-definite real symmetric matrix;

x = det(x)
(

x
det(x)

)
, det(x) ∈ R+ and x

det(x) ∈ SL(2,R)/SO(2);

Tr: trace operator, guarantees invariance thanks to its cyclic property.
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Computation of brightness difference with the perceptual metrics

Brightness: perceived difference among lights differing only in intensity:
x and x ′ = αx , α > 0.

P ' R+ × R+ × R+:

d(x , αx) =
∫ αx

x
ds =

√
α2
1 + α2

2 + α2
3

∫ α

1

dt
t =

√
α2
1 + α2

2 + α2
3 log(α)

If P ' R+ × SL(2,R)/SO(2):

d(x , αx) =
∫ αx

x
ds =

√
Tr
(
1 0
0 1

)∫ α

1

dt
t =

√
2 log(α)

In both cases we recover Weber-Fechner’s law.
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Two main limits of the Resnikoff model: 1 - Isolated conditions

Color in context: Induction
Real scenes are not given by isolated lights on a uniform background.

The distribution of illumination and reflectances influences visual
perception: induction.

Induction affects all three chromatic attributes:
Hue
Saturation
Brightness
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Induced Hue
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Induced Saturation
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Induced Brightness (or Achromatic induction)
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Two main limits of the Resnikoff model: 1 - Isolated conditions

Induction can be measured through psychophysical experiments
(Wallach (1948), Rudd-Zemach (2004), Gronchi-Provenzi, (2017)).
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Two main limits of the Resnikoff model: 2 - Group of transformations

Psychophysical validation of Resnikoff’s hypotheses
Resnikoff himself, in a following paper, claimed that
‘the strongest hypothesis about the group of transformations acting on P

is linearity’.

Up to this date...and my knowledge, no psychophysical experience has
been performed to test this yet;

Taken into account the central role of GL+(P) in Resnikoff’s model, this
experiment is crucial.
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But also...(far more difficult) cognitive effects must eventually be taken into
account
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But also...(far more difficult) cognitive effects must eventually be taken into
account
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THANKS!
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