ALGEBRA FOR COLOR CORRECTION IN IMAGE SENSORS
GENERAL CONTEXT

• PhD student at CEA-LETI (Grenoble) with LPNC:
 • Supervisors:
 • Jérôme Vaillant (CEA)
 • David Alleysson (LPNC)
 • Title: color restitution in low light level image sensors
 • Main deals:
 • Poor signal to noise ratio
 • Illumination conditions
GENERAL CONTEXT

- PhD student at CEA-LETI (Grenoble) with LPNC:
 - Supervisors:
 - Jérôme Vaillant (CEA)
 - David Alleysson (LPNC)
 - Title: color restitution in low light level image sensors
 - Main deals:
 - Poor signal to noise ratio
 - Illumination conditions
PLAN

• Introduction and context
 • The goal of color sensor design
 • Classical color correction (state of the art)

• Physics of light capture and sensor limitation
 • Photon absorption, noise

• Mathematical representation of light
 • Discrete approximation
 • Sensor space, color space
 • Color correction interpretation

• Challenge and prospects
INTRODUCTION AND CONTEXT

- **Color image sensor:**
 - Goal: acquire similar data as the human perception in given conditions:
INTRODUCTION AND CONTEXT

- **Color image sensor:**
 - Goal: acquire similar data as the human perception in given conditions:

- **Key components for color acquisition (recall):**

Color sensor

Human visual system

Photodiode

Pixel

Color filters

IR cutoff filter
INTRODUCTION AND CONTEXT

- **Color image sensor:**
 - Goal: acquire similar data as the human perception in given conditions:

- **Key components for color acquisition (recall):**
 - Photodiode
 - Pixel
 - Color filters
 - IR cutoff filter

Optimisation
INTRODUCTION AND CONTEXT

• Color image sensor:
 • Goal: acquire similar data as the human perception in given conditions:

 ![Color sensor](image1)
 ![Human visual system](image2)

• Key components for color acquisition (recall):

 ![Pixels](image3)
 ![Graph of spectral sensitivities](image4)
INTRODUCTION AND CONTEXT

• State of the art:
 • Basic image processing:

Demosaiçing
INTRODUCTION AND CONTEXT

• State of the art:
 • Basic image processing:

Demosaiçing White balance

Illuminant
INTRODUCTION AND CONTEXT

- **State of the art:**
 - Basic image processing:

Demosaiçcing

White balance

Color correction

Illuminant

QE

Color matching functions
INTRODUCTION AND CONTEXT

- **State of the art:**
 - Classical color correction:

 \[
 T = \begin{bmatrix}
 R_{T1} & \cdots & R_{T24} \\
 G_{T1} & \cdots & G_{T24} \\
 B_{T1} & \cdots & B_{T24} \\
 1 & \cdots & 1
 \end{bmatrix}
 \]

 \[
 S = \begin{bmatrix}
 R_{S1} & \cdots & R_{S24} \\
 G_{S1} & \cdots & G_{S24} \\
 B_{S1} & \cdots & B_{S24} \\
 1 & \cdots & 1
 \end{bmatrix}
 \]

 \[
 \hat{M} = \arg\min_M (\|T - M.S\|^2)
 \]

 \[
 \hat{M} = T.S^T.(S.S^T)^{-1}
 \]

 \[
 \hat{M} = \begin{bmatrix}
 K & [V] \\
 0 & \cdots & 0 & 1
 \end{bmatrix}
 \]

 \[
 K = CCM.WB
 \]

 \[
 \begin{bmatrix}
 R \\
 G \\
 B_{offset}
 \end{bmatrix}
 = -K^T.(K.K^T)^{-1}.V
 \]

 \[
 \begin{bmatrix}
 R \\
 G \\
 B_{corr}
 \end{bmatrix}
 = \begin{bmatrix}
 C_{11} & C_{12} & C_{13} \\
 C_{21} & C_{22} & C_{23} \\
 C_{31} & C_{32} & C_{33}
 \end{bmatrix}
 \begin{bmatrix}
 W_{11} & 0 & 0 \\
 0 & W_{22} & 0 \\
 0 & 0 & W_{33}
 \end{bmatrix}
 \begin{bmatrix}
 R \\
 G \\
 B_{raw}
 \end{bmatrix}
 - \begin{bmatrix}
 R \\
 G \\
 B_{offset}
 \end{bmatrix}
 \]

 CCM

 WB
INTRODUCTION AND CONTEXT

• State of the art:
 • Exemple of color correction (computed on hyperspectral image)
 • CIE-D65 illuminant
 • Teledyne Onyx sensor with infrared cutoff filter (slides before)
State of the art:

- Exemple of color correction (computed on hyperspectral image):
- CIE-D65 illuminant
- Teledyne Onyx sensor with infrared cutoff filter (slides before)
PHYSICS OF LIGHT YIELDING AND SENSOR LIMITATION

- Photon absorption computation:
 - Physical units:
 - Black body 6500K
 - Reflectance rate $R_p(\lambda)$
 - Photon/electron conversion rate $QE(\lambda)$
 - Pixels
 - Physical absolute unit
• **Photon absorption computation:**
 • Electron measure:

 \[
 M_{e^-} = \frac{N_{lux} \cdot T_{int} \cdot a_{pix}^2}{4 \cdot f^2_\#} \int_0^\infty I_{lum}(\lambda) \cdot R_p(\lambda) \cdot QE(\lambda) \cdot d\lambda
 \]

• **Limitation of a sensor, the noise:**
 • Noise: uncertainty on the electron number measurement
 • Main source of noise:
 • Readout noise (standard deviation given by the manufacturer, some electrons) Gaussian
 • Photonic shot noise \((\sigma_{ph}^2 = signal)\) Poissonian
Photon absorption computation:

Electron measure:

$$M_{e-} = \frac{N_{lux} \cdot T_{int} \cdot a_{pix}^2}{4 \cdot f^2_\#} \int_0^{\infty} I_{lum}(\lambda) \cdot R_p(\lambda) \cdot QE(\lambda) \cdot d\lambda$$

Limitation of a sensor, the noise:

Noise: uncertainty on the electron number measurement

Main source of noise:

Readout noise (standard deviation given by the manufacturer, some electrons)
Gaussian

Photonic shot noise ($\sigma_{ph}^2 = signal$)
Poissonian

$$M_{e-} = \frac{N_{lux} \cdot T_{int} \cdot a_{pix}^2}{4 \cdot f^2_\#} \int_0^{\infty} I_{lum}(\lambda) \cdot R_p(\lambda) \cdot QE(\lambda) \cdot d\lambda \pm \Delta M_{e-}$$
• **Color correction:**
 • Signal and noise amplification
 • Signal to noise ratio decrease
• **Color correction:**
 - Signal and noise amplification
 - Signal to noise ratio decrease

• **Quantitative exemple:**

 Usual model: « without correlation between channels »

![Graph showing SNR vs. illumination](image)
• Study of noise propagation \rightarrow adapte spectral transmittances
 • Use large band filter for better raw SNR:

 \[\text{Transmittance} \]

 \[\lambda_1 \quad \lambda_n \]

 Better spectral property

 \[\text{Transmittance} \]

 \[\lambda_1 \quad \lambda_n \]

 Larger band \rightarrow Higher raw SNR

• Final SNR increase? **Not obvious**
 • Noise can be amplified according to spectral shape and number of spectral channels
 • \rightarrow We need an algebraic representation for noise propagation through color correction
ALGEBRAIC WRITTING

- From physics to algebraic representation:

\[M_{e-} = \frac{N_{lux} \cdot T_{int} \cdot a_{pix}^2}{4 \cdot f_\#^2} \int_0^\infty I_{lum}(\lambda) \cdot R_p(\lambda) \cdot QE(\lambda) \cdot d\lambda \]

Finite support

\[M_{e-} = \frac{N_{lux} \cdot T_{int} \cdot a_{pix}^2}{4 \cdot f_\#^2} \int_{700nm}^{\infty} I_{lum}(\lambda) \cdot R_p(\lambda) \cdot QE(\lambda) \cdot d\lambda \]

\[M_{e-} \propto \int_{400nm}^{700nm} I_{lum}(\lambda) \cdot R_p(\lambda) \cdot QE(\lambda) \cdot d\lambda \]
ALGEBRAIC WRITTING

- From physics to algebraic representation:

\[
M_e = \frac{N_{lux} \cdot T_{int} \cdot a_{pix}^2}{4 \cdot f_\#^2} \int_0^\infty I_{lum}(\lambda) \cdot R_p(\lambda) \cdot QE(\lambda) \cdot d\lambda
\]

Finite support

\[
M_e = \frac{N_{lux} \cdot T_{int} \cdot a_{pix}^2}{4 \cdot f_\#^2} \int_{400 \text{nm}}^{700 \text{nm}} I_{lum}(\lambda) \cdot R_p(\lambda) \cdot QE(\lambda) \cdot d\lambda
\]

\[
M_e \propto \int_{400 \text{nm}}^{700 \text{nm}} I_{lum}(\lambda) \cdot R_p(\lambda) \cdot QE(\lambda) \cdot d\lambda
\]

Discretisation:

\[
M_e \propto \sum_{k=1}^{n} I_{lum}(\lambda_k) \cdot R_p(\lambda_k) \cdot QE(\lambda_k) \cdot \Delta \lambda
\]

Matrix form

\[
M_e \propto QE^T \cdot diag(I_{lum}) \cdot R_p
\]
MATHEMATICAL REPRESENTATION OF LIGHT

- **Discrete approximation of physics:**
 - Measure or digital interpolation:

 \[
 \begin{align*}
 &\text{Physical function } f(\lambda) \\
 &\text{Measure distribution } \varphi_1(\lambda) \\
 &\lambda_1 \quad \lambda_n \\
 &\lambda(\text{nm})
 \end{align*}
 \]

 Vectorized function \(f \)

 \[
 \begin{align*}
 f(\lambda_1) &= (f \ast \varphi_1)(\lambda) \\
 f(\lambda_2) &= (f \ast \varphi_2)(\lambda) \\
 \vdots \\
 f(\lambda_n) &= (f \ast \varphi_n)(\lambda)
 \end{align*}
 \]
• **Discrete approximation of physics:**
 • Measure or digital interpolation:

 \[f \in R^n \]
 \[f = \sum_{k=1}^{n} f_k \cdot e_k \]

 \[[e_1, \ldots, e_n] = [(1,0, \ldots, 0), \ldots, (0, \ldots, 0,1)] \]

• **Vector representation:**
 • \(n \)-space \(\rightarrow R^n \) generated by the canonic base: a finite dimension Hilbert space

\[
\begin{array}{c}
\text{Vectorized function } f \\
\hline
f(\lambda_1) = (f \ast \varphi_1)(\lambda) \\
f(\lambda_2) \\
\vdots \\
f(\lambda_n) = (f \ast \varphi_n)(\lambda)
\end{array}
\]
MATHEMATICAL REPRESENTATION OF LIGHT

- Discrete approximation of physics:
 - Formalism recalling:
 - Consider $f(\lambda)$, a spectral function
 - \tilde{f} is the vectorized form of f

Integration in pre-Hilbert space:

$$\int_{\lambda_1}^{\lambda_n} f(\lambda) \cdot d\lambda \approx \sum_{k=1}^{n} f(\lambda_k) \cdot \Delta \lambda = [\tilde{f} \cdot \mathbf{1}] \cdot \Delta \lambda$$
MATHEMATICAL REPRESENTATION OF LIGHT

- **Discrete approximation of physics:**
 - Formalism recalling:

 Vectorized function f
 \[
 \begin{array}{c|c}
 f(\lambda_1) & g(\lambda_1) \\
 f(\lambda_2) & g(\lambda_2) \\
 \vdots & \vdots \\
 f(\lambda_n) & g(\lambda_n)
 \end{array}
 \]

 Matrix writing:
 \[
 a = \hat{f} \cdot \hat{g} = f^T g
 \]

- For vectorial study no need to scale the scalar products (physical parameters of $\Delta \lambda$)
• **Sensor algebraic space:**

 • Consider an RGB image sensor having spectral channels such as $(\vec{r}, \vec{g}, \vec{b})$ are R^n elements.

 • With: $\vec{r} = \sum_{k=1}^n r_k \cdot \vec{e}_k$, $\vec{g} = \sum_{k=1}^n g_k \cdot \vec{e}_k$, $\vec{b} = \sum_{k=1}^n b_k \cdot \vec{e}_k$

 • This family is free and generates a 3 dimensions R^n subspace:

 ![Diagram of Sensor^3 in R^n](image-url)
• **Color (or display) algebraic space:**
 • Consider a standard color space such as XYZ generated in R^n by $(\tilde{x}, \tilde{y}, \tilde{z})$.
 • With: $\tilde{x} = \sum_{k=1}^{n} x_k \cdot \vec{e}_k$, $\tilde{y} = \sum_{k=1}^{n} y_k \cdot \vec{e}_k$, $\tilde{z} = \sum_{k=1}^{n} z_k \cdot \vec{e}_k$
 • This family is free and generates a 3 dimensions R^n subspace:
• Schematic radiance projection:
 • \(L \) radiance spectrum, \(F \) quantum efficiencies, \(H \) color matching functions

Measure operator:
\[
F = \begin{bmatrix}
R_1 & G_1 & B_1 \\
\vdots & \vdots & \vdots \\
R_n & G_n & B_n
\end{bmatrix}
\]

Measure = \(F^T \cdot L \)
MATHEMATICAL REPRESENTATION OF LIGHT

• Schematic radiance projection:
 • L radiance spectrum, F quantum efficiencies, H color matching functions

Measure operator:

$$ F = \begin{bmatrix} R_1 & G_1 & B_1 \\ R_n & G_n & B_n \end{bmatrix} $$

$$ Measure = F^T \cdot L $$

Expectation operator:

$$ H = \begin{bmatrix} X_1 & Y_1 & Z_1 \\ X_n & Y_n & Z_n \end{bmatrix} $$

$$ Expectation = H^T \cdot L $$
MATHEMATICAL REPRESENTATION OF LIGHT

- **Schematic radiance projection:**
 - L radiance spectrum, F quantum efficiencies, H color matching functions

Measure operator:

$$ F = \begin{bmatrix} R_1 & G_1 & B_1 \\ R_n & G_n & B_n \end{bmatrix} $$

$Measure = F^T . L$

Expectation operator:

$$ H = \begin{bmatrix} X_1 & Y_1 & Z_1 \\ X_n & Y_n & Z_n \end{bmatrix} $$

$Expectation = H^T . L$
• Another schematic view of color correction:
 • Raw acquisition:
Another schematic view of color correction:

- Raw acquisition:
• Another schematic view of color correction:
 • Application of the CCM:
• Another schematic view of color correction:
 • Decomposition of the CCM:
Another schematic view of color correction:

- Decomposition of the CCM:
MATHEMATICAL REPRESENTATION OF LIGHT

- Another schematic view of color correction:
 - Noise and CCM:
 MATHEMATICAL REPRESENTATION OF LIGHT

- **Color correction Kernel (not scaled):**
 1) Radiance spectrum evaluation:
 - Cohen operator (explicit form):
 \[
 \hat{L} = F \cdot (F^T F)^{-1} \cdot F^T \cdot L
 \]
• **Color correction Kernel (not scaled):**
 1) Radiance spectrum evaluation:

 • Cohen operator (explicit form):

 \[\hat{L} = F \cdot (F^T \cdot F)^{-1} \cdot F^T \cdot L \]

 • Use of a dataset (state of the art method):

 \[\hat{L} = z_{set} \cdot (F^T z_{set})^T \cdot (F^T z_{set} \cdot (F^T z_{set})^T)^{-1} \cdot F^T \cdot L \]
Color correction Kernel (not scaled):

1) Radiance spectrum evaluation:

 - Cohen operator (explicit form):
 \[\hat{L} = F \cdot (F^T F)^{-1} \cdot F^T \cdot L \]
 - Use of a dataset (state of the art method):
 \[\hat{L} = z_{set} \cdot (F^T z_{set})^T \cdot (F^T z_{set} \cdot (F^T z_{set})^T)^{-1} \cdot F^T \cdot L \]

2) Color space projection:

\[\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{corrected}} = H^T \cdot \hat{L} \]
• State of the art (simplified):
 • Classical color correction:

\[
T = \begin{bmatrix}
R_{T1} & \ldots & R_{T24} \\
G_{T1} & \ldots & G_{T24} \\
B_{T1} & \ldots & B_{T24}
\end{bmatrix}
\]

\[
S = \begin{bmatrix}
R_{S1} & \ldots & R_{S24} \\
G_{S1} & \ldots & G_{S24} \\
B_{S1} & \ldots & B_{S24}
\end{bmatrix}
\]

\[
\hat{M} = \arg\min_{M} (\|T - M.S\|^2)
\]

\[
\hat{M} = T.S^T.(S.S^T)^{-1}
\]

\[
\hat{M} = CCM.WB
\]

\[
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}_{corr} = \hat{M} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}_{raw}
\]
MATHEMATICAL REPRESENTATION OF LIGHT

• Color correction matrix:
 • Complete expression:

\[\hat{M} = C \cdot H^T \cdot z_{set} \cdot (F^T z_{set})^T \cdot (F^T z_{set} \cdot (F^T z_{set})^T)^{-1} \]
MATHEMATICAL REPRESENTATION OF LIGHT

• Color correction matrix:
 • Complete expression:

\[\hat{M} = C \cdot H^T \cdot z_{set} \cdot (F^T z_{set})^T \cdot (F^T z_{set} \cdot (F^T z_{set})^T)^{-1} \]

Scaling matrix Color space projection Spectral evaluation operator

• Analogy with the state of the art:

\[\hat{M} = C \cdot H^T \cdot z_{set} \cdot (F^T z_{set})^T \cdot (F^T z_{set} \cdot (F^T z_{set})^T)^{-1} \]

« \(\propto T \) » « \(\propto S \) »
Color correction matrix:

- **Complete expression:**

\[
\hat{M} = C \cdot H^T \cdot z_{\text{set}} \cdot (F^T z_{\text{set}})^T \cdot (F^T z_{\text{set}} \cdot (F^T z_{\text{set}})^T)^{-1}
\]

- **Analogy with the state of the art:**

\[
\hat{M} = C \cdot H^T \cdot z_{\text{set}} \cdot (F^T z_{\text{set}})^T \cdot (F^T z_{\text{set}} \cdot (F^T z_{\text{set}})^T)^{-1}
\]

- **Scaling:** in 8-bits acquisition → display in sRGB standard

\[
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}_{\text{raw}} = \hat{M} \cdot \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}_{\text{sRGB}}
\]

\([0, 255]\)
PROSPECT AND CHALLENGE

• Scaling:
 • Important for compact writing of CCM: 3x3 fix matrix
 • Physical point of view: absolute scale → classical geometry
 • Perception point of view: relative scale → projective geometry?
 • To adapt formalism: homogenous coordinates
 • Homography as spectral color correction
CONCLUSION

• Image sensor industry:
 • Use of empirical color correction
 • Work in absolute physical units

• Cognitive and mathematical color science:
 • Mathematical approach
 • Relative scales

• Strong link between domains useful to understand
Thanks for attention!