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Philipona & O'Regan’s model of sensed reflectances
Sensed space

Space of three dimensions

@ Three types of human cones, with different sensitivity functions
R(A) = (Ru(A), Ru(A), Rs(X)).
@ Sensed incident light:

UL(E)
u(E) = <uM(E)> :/E(A)R(A)d)\.
llg;( E ) A

@ Sensed reflected light:

vi(E)
vi(E) = | viy(E) :/E()\)R()\)S()\)d)\.
v§(E) n

Projection from a space of infinite dimension into a three dimensional
space
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Philipona & O'Regan’s model of sensed reflectances

Sensed reflectance

o Philipona & O'Regan: the sensed analogue of reflectance is a linear
operator, illuminant-independent:

Vi (E) = A°u(E)

o Y S
S(NE(A)

Physical world

Sensed world

s u(E)
3x3
matrix
L M

o The 3x3 Reflectance Matrix AS represents the linear operator.
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Philipona & O'Regan’s model of sensed reflectances

Computation of the Reflectance Matrices

@ 1600 munsell chips and 3000 natural surfaces.
Matrices A® computed for each surfaces, through a linear regression over a
set of natural illuminants (500).

V'(E) = Au(E)

number of number of
surfaces surfaces
600 ' 600

i
400 ] 00
200 i 200

[

0 ; :
98 985 99 995 100 098 98.5 99 99.5 100
a % ofvariance accounted b % of variance accounted

@ Sensed analogue of surface reflectance is very well modeled by a linear
operator!
= properties of the A% account for reflectance properties of surfaces
surfaces, as sensed the by human eye.
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Philipona & O'Regan’s model of sensed reflectances

Non-diagonal Reflectance Matrices

o We would like to study the properties of AS.

@ However:

400 450 500 550 600 650 700
Wavelength

L and M cones are overlapping = A° is most often not diagonal:

vi(E) 0.2590 0.2151 —0.0136\ / u.(E)
vi(E) | = —0.0979 0.5861 —0.0090 | | um(E) | .
Vva(E) —0.0099 0.0155 0.4212 us(E)

@ There are 9 reflection coefficients = need to lower the number of coefficients
!
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Philipona & O'Regan’s model of sensed reflectances
Diagonalization of the Reflectance Matrix

@ A solution is the matrix diagonalization.
@ Philipona & O'Regan showed all Reflectance Matrices can be diagonalized
by a per surface transformation: : AS = (TS)_1 DSTS.

&V (E) = (T°) 7 D°Tou(E),

o TSP(E) = D°TSu(E),
v’ (E) 7 0 0 i (E)

s [FyE) =10 ry O ®*y(E) |,
¥°2(E) 0 0 rg ®z(E)

@ We now have only three independent reflection coefficients r’!
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Philipona & O'Regan’s model of sensed reflectances

Singularities

@ Some Reflectance Matrices are particular: they are singular.

o Two kind of singularities:

o First kind is when the three reflection coefficients r,.S are about equal.
e Second kind is when one reflection coefficient is either very large or very
small compared to the other two.

o Similarly to achromatic surfaces, singular surfaces of second kind are
expected to have a particular perceptual status.
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Philipona & O'Regan’s model of sensed reflectances

Singularity index

@ Philipona & O'Regan defined a measure of this second kind of singularity
with a singularity index:

S U% U§
g = max
g max ? gmax ?
1 2

@ where, if the reflection coefficients are ordered decreasingly rlS > rzS > I‘3SZ
° o'? nS/nS
o 05 =nS/r®
o o and o7'® are the maximum Uf and a§ values respectively over the
entire dataset of surfaces.

@ The singularity index will thus be high in cases:

o nS>>npS~ns (high o1).
° r1S ~ rzs >> r1S (high 0’2).

13/44



Philipona & O'Regan’s model of sensed reflectances

Singularities and focal colors

o Philipona & O'Regan showed that singularities correlate with focal colors:
Berlin and Kay, (1969).

Empirical data: World Colour Survey POs computed singular reflecting properties

Nbr of speakers
Index
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r = 0.64.
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Philipona & O'Regan’s model of sensed reflectances

Singularities and unique hues

o Philipona & O'Regan showed that singularities may be related to unique
hues: Kuehni, (2004).

singularity index

ag Y 0 02 04 o0s

(x,y) chromatic coordinates

0 02 o4
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Philipona & O'Regan’s model of sensed reflectances

Singularities and illuminants

@ Model is accurate for natural, braod illuminants. What about non-natural
illuminants? Witzel et al., (2015)

o
=

Natural - Fluorescent

Speclral power
o
&

4]
400 500 600 700
Wavelength [nm]

Munsell Value

Munsell Hue
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Philipona & O'Regan’s model of sensed reflectances

In short

The linear model of Philipona & O'Regan is very simple, yet very precise. It
also may give a hint to explain the particular perceptual status of focal colors
and unique hues.

But...
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Philipona & O'Regan’s model of sensed reflectances

[lluminant-Independent hypothesis and implementation over a database

@ Operators are not really illuminant-independent: = Obtained through
linear regression over a set of natural illuminants.

A per surface diagonalization, unlikely to happen in our neural system.

=

o We would like to compute the operators in a very
illuminant-independent. fashion

We would like to have one global transformation diagonalizing all
operators.
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llluminant-independent approach
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llluminant-independent approach
Novel llluminant-Independent approach

@ New method to compute the A% fully independently with respect to the
illuminant:

v(E) = Au(E)

@VS(E):/E(/\)ASR()\)d/\,
A

o / E(M) (S(A) - R(\) — A°R(N)) dA = 0.
A

@ Which, according to the Fundamental Lemma of Calculus of variation is
equivalent to:
S(A)-R(\) = A°R(\)  VAeA

@ This time, the multi-linear regression can be performed on \!
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llluminant-independent approach

Novel llluminant-Independent approach

S(A)-R(A\) = A°R(\)  VAaeA

@ In this case, reflectance acts as a transformation of the cone sensitivities:

R()

500 550 600 650
Wavelength

@ Linear operator: fit the transformed cone sensitivities with a linear

combination of the initial ones.
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llluminant-independent approach

Validity of the llluminant-Independent hypothesis

@ Is the illuminant-independence hypothesis valid?
S(A)-R(\) = A°R(\)  VAeA

= Compute the percentage of variance accounted for by the model (Data:
1600 munsell chips, 800 natural reflectances):

1200
1000
800
600
400
200 mﬁ—‘r
o L .

50 60 70 80 90 100
% of variance accounted

Number of surfaces

@ mean: 97% and median: 98%

@ llluminant-Independent hypothesis is valid for most of the surfaces, but
not all of them.
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llluminant-independent approach

Quantitative comparison with Philipona & O'Regan’s approach

@ Linear relation between incident and reflected sensed light still satisfied?
v'(E) = A°u(E)

@ Test on natural illuminants: (400 illuminants).

Illuminants | Variance accounted by the model for whole set of surfaces
With the Il approach With PO’s approach

mean | median min mean | median min

natural 99.70 | 99.96 | 91.93 | 99.94 | 99.97 98.83

@ The new Reflectance Matrices are consistent with the linear relation.
Quite surprising!

@ Philipona & O'Regan’s matrices allow a better approximation than the Il
approach if computed and tested with the same natural illuminant dataset.

o What about un-natural illuminants?
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llluminant-independent approach

Quantitative comparison with Philipona & O'Regan’s approach

@ Un-natural illuminants obtained from Witzel et al., (2015).

Fluorescent Monochromatic

1
08
0.6
=
i}
0.4
0.2
0
400 450 500 550 600 650 700 400 450 500 550 600 650 700
Wavelength Wavelength
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llluminant-independent approach

Quantitative comparison with Philipona & O'Regan’s approach

Illuminants Variance accounted by the model for all set of surfaces
With the Il approach With PO's approach
mean | median min mean | median min
natural 99.70 99.96 91.93 | 99.94 99.97 98.83
fluorescent 99.45 | 99.75 | 87.23 | 98.69 | 99.45 65.53
monochromatic | 96.33 | 97.83 | 37.72 | 91.68 | 96.00 -2.30

@ The new Reflectance Matrices are more accurate!
@ Thus:

e more robust than Philipona & O'Regan’s ones to illuminant change.
o directly refer to the action of a surface such as it is defined by the model.
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llluminant-independent approach

Singularities of new matrices

Il computed singular reflecting properties

Index

m 0O o m

r= 0.61 = the correlation is preserved.
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In short
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llluminant-independent approach

The illuminant-independent approach is less costly than Philipona &
O’Regan’s one.

It is a direct consequence of the llluminant-Independent hypothesis of the
sensed reflectance.

New insight into the limits of the model .

The resulting Reflectance Matrices are more in agreement with the
definition of sensed reflectance.

The model is now more robust to illuminant change.

The new matrices are a good groundwork to finding a global
transformation.
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A global diagonalization transformation

Color constancy and Philipona & O’'Regan’s model

29/44

Color constancy: discount the effect of the illuminant to access intrinsic
reflection properties of surfaces.

Vi (E) = A°u(E)
To have an easier access to reflection properties: matrix diagonalization.
A= (T)'D°T

The compatibility requires a joint-diagonalization of every matrices by
global transformation T.

Vazquez-Corral et al., (2012) computed a global transformation T similar
to a joint diagonalization. But:

o Complicated algorithm: spherical sampling (Finlayson et Siisstrunk, 2001)
e requires a database of illuminants.
o requires the specification of an illuminant of reference.



A global diagonalization transformation

Now that we have llluminant-Independent Reflectances Matrices,
we can use a gradient descent without the specification of any
illuminant!
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A global diagonalization transformation
Gradient descent

@ Commonly used measure of the diagonality of a matrix:

N
o= 5SS |mf

k=1 i#j
@ We want to find the transformation T, that minimizes this measure:

Topt = argmin JD(T)
TER3X3

@ The gradient formula was taken from Hori, (1999):
N
VID(T)=2T) {(T—lASk T), (T 'A% T — diag(T A T))} ,
k=1

@ The discrete gradient descent is thus:

VJID(T,)

Tot1=Th— nie——e—, N2>
" IVID(To)
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A global diagonalization transformation

Gradient descent (results)

-4
8.5 % 10

75

JD

6.5

0 2 4 6 8 10 12 14
Number of iteration

@ The off diagonal elements of a transformed Reflectance Matrix are in
average 50x smaller than the diagonal elements.
= Empirical evidence that T almost diagonalizes all of our matrices.
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A global diagonalization transformation

Singularities with global transformation

Tom computed singular reflecting properties

1
08

0.6

Index

0.4

0.2

r= 0.56 = the correlation is preserved.
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A global diagonalization transformation

Virtual sensors

@ A global transformation on the cone inputs is equivalent to a global
transformation applied on the cone sensitivity functions, resulting in
optimal virtual sensors.

1.4r
——-L
1.2 ——-M
—--5
1 ——virtual L
virtual M
0.8 ——virtual S

0.6

R(A)

0.4

0.2

0

0.2

0.4 !
400 450 500 550 600 650 700

Wavelength
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A global diagonalization transformation

Virtual sensors and unique hues

@ interestingly, the virtual sensor's peaks and crossings correlate greatly with
empirical findings on unique hues: Kuehni, (2004):

1.5 T T

Absorption rate

400 500 600 700
Wavelength
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Conclusion
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Conclusion

Conclusion: in short
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An original approach to color vision.

Does not require any database of illuminants.
= More consistent with the illuminant-Independent hypothesis of the
model and more robust to illuminant change.

Allow simpler computation of a global transformation T compatible with
classic approaches on color constancy.

Singularities found with the Reflectance Matrices, as well as optimal
'virtual' sensors, may give a piece of explanation to human perceptual
phenomena such as the existance of color categories and unique hues.



Thanks

Thank you for your attention
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Appendices

Singularities

@ Singularities in sensitive reflectances are correlated with the particularity of
some surface colors to be perceived as focal:

Empirical data: World Colour Survey POs computed singular reflecting properties
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@ The Munsell color system divides colors according to 3 characteristics:
hue, value (lightness) and chroma (saturation)

@ How these last two correlate with singularities ?
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Appendices

Properties of singularity index: value and chroma

o Witzel et al. (2015) showed that the singularity index and chroma were
correlated.

Singularity index
°
&

o

g 0 2 4 6 8 10 12 14 16
<] Chroma
4=
&) 5 1
k]
=,
> :
5" ' ' i ' x i
= l ]
S
>
E [ I
@ o
2 3 4 5 6 7 8 9 10

@ We found correlations for chroma of 0.74, while for value correlation of 0.1.

@ The hues 'green’ and 'blue’ allow smaller chroma, can explain why their
singularity index smaller compared to 'red’ and 'yellow’.
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Appendices

Properties of singularity index: value and chroma

@ Why dependence on chroma and not value ?

Value Chroma

IR RER
2o o wn

<<<<<<=<

Reflectance

400 450 500 550 600 650 700 400 450 500 550 600 650 700
Wavelength Wavelength

o Value: at first approximation, it homogeneously deforms the reflectance
curves via a multiplicative constant. Since the singularity index only takes
into account ratios between elements of the Reflectance Matrices, a
multiplicative constant has no influence on the singularity index.

o Chroma: deforms the reflectance functions non-homogeneously by
enhancing the contrast in reflectance between wavelengths. Thus, it
enlarges the contrast between reflection coefficients.
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Appendices
Von-Kries diagonal approach

@ In an RGB camera, we have three sensors R, G and B, with small
overlapping sensitivity functions. We denote by x the pixel position. Due
to the disjoint property of the R,G,B sensors, we can approximately write:

v,g?(x, E) Sr(x) 0 0 ugr(E)
Vi(x,E) | = ( 0 S6(x) 0 ) <uG(E)>,
va(x, E) 0 0 Sg(x) ug(E)

which, in turn, is equivalent to:

Sr(x) 1/ur(E) 0 0 ve(x)
(Sg(x)> = ( 0 1/uc(E) 0 ) ve(x)
Se(x) 0 0 1/ug(E) va(x)

@ Independent per component discount of the illuminant and extraction of
reflection properties.
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Appendices

A closer look a the limits of Il

08

)
>

Reflectance
o
=

Reflectance

= - > ol== ~=
200 450 500 550 600 650 700 400 450 500 550 600 650 700
Wavelength Wavelength

@ Lower accuracy when high peaks: in-homogeneous transformation over .

@ Peak either around the beginning or the end of the visual spectrum.
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